Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 625(7993): 51-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967578

RESUMO

WASP-107b is a warm (approximately 740 K) transiting planet with a Neptune-like mass of roughly 30.5 M⊕ and Jupiter-like radius of about 0.94 RJ (refs. 1,2), whose extended atmosphere is eroding3. Previous observations showed evidence for water vapour and a thick, high-altitude condensate layer in the atmosphere of WASP-107b (refs. 4,5). Recently, photochemically produced sulfur dioxide (SO2) was detected in the atmosphere of a hot (about 1,200 K) Saturn-mass planet from transmission spectroscopy near 4.05 µm (refs. 6,7), but for temperatures below about 1,000 K, sulfur is predicted to preferably form sulfur allotropes instead of SO2 (refs. 8-10). Here we report the 9σ detection of two fundamental vibration bands of SO2, at 7.35 µm and 8.69 µm, in the transmission spectrum of WASP-107b using the Mid-Infrared Instrument (MIRI) of JWST. This discovery establishes WASP-107b as the second irradiated exoplanet with confirmed photochemistry, extending the temperature range of exoplanets exhibiting detected photochemistry from about 1,200 K down to about 740 K. Furthermore, our spectral analysis reveals the presence of silicate clouds, which are strongly favoured (around 7σ) over simpler cloud set-ups. Furthermore, water is detected (around 12σ) but methane is not. These findings provide evidence of disequilibrium chemistry and indicate a dynamically active atmosphere with a super-solar metallicity.

2.
Nature ; 624(7991): 263-266, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931645

RESUMO

Brown dwarfs serve as ideal laboratories for studying the atmospheres of giant exoplanets on wide orbits, as the governing physical and chemical processes within them are nearly identical1,2. Understanding the formation of gas-giant planets is challenging, often involving the endeavour to link atmospheric abundance ratios, such as the carbon-to-oxygen (C/O) ratio, to formation scenarios3. However, the complexity of planet formation requires further tracers, as the unambiguous interpretation of the measured C/O ratio is fraught with complexity4. Isotope ratios, such as deuterium to hydrogen and 14N/15N, offer a promising avenue to gain further insight into this formation process, mirroring their use within the Solar System5-7. For exoplanets, only a handful of constraints on 12C/13C exist, pointing to the accretion of 13C-rich ice from beyond the CO iceline of the disks8,9. Here we report on the mid-infrared detection of the 14NH3 and 15NH3 isotopologues in the atmosphere of a cool brown dwarf with an effective temperature of 380 K in a spectrum taken with the Mid-Infrared Instrument (MIRI) of JWST. As expected, our results reveal a 14N/15N value consistent with star-like formation by gravitational collapse, demonstrating that this ratio can be accurately constrained. Because young stars and their planets should be more strongly enriched in the 15N isotope10, we expect that 15NH3 will be detectable in several cold, wide-separation exoplanets.

3.
Appl Opt ; 61(30): 9000-9009, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36607029

RESUMO

The technological progress in spatial-light modulator (SLM) technology has made it possible to use those devices as programmable active focal-plane phase coronagraphic masks, opening the door to novel versatile and adaptive high-contrast imaging observation strategies. However, the scalar nature of the SLM-induced phase response is a potential hurdle when applying the approach to wideband light, as is typical in astronomical imaging. For the first time, to our knowledge, we present laboratory results with broadband light (up to ∼12% bandwidth) for two commercially available SLM devices used as active focal-plane phase masks in the visible regime (640 nm). It is shown that under ideal or realistic telescope aperture conditions, the contrast performance is negligibly affected in this bandwidth regime, reaching a sufficient level for ground-based high-contrast imaging, which is typically dominated by atmospheric residuals.

4.
Opt Express ; 25(14): 16686-16700, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789170

RESUMO

Direct imaging of exoplanets or circumstellar disk material requires extreme contrast at the 10-6 to 10-12 levels at < 100 mas angular separation from the star. Focal-plane mask (FPM) coronagraphic imaging has played a key role in this field, taking advantage of progress in Adaptive Optics on ground-based 8 + m class telescopes. However, large telescope entrance pupils usually consist of complex, sometimes segmented, non-ideal apertures, which include a central obstruction for the secondary mirror and its support structure. In practice, this negatively impacts wavefront quality and coronagraphic performance, in terms of achievable contrast and inner working angle. Recent theoretical works on structured darkness have shown that solutions for FPM phase profiles, optimized for non-ideal apertures, can be numerically derived. Here we present and discuss a first experimental validation of this concept, using reflective liquid crystal spatial light modulators as adaptive FPM coronagraphs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...